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Zermelo and Loschmidt pointed out that the equations of classical mechanics 
are recurrent and reversible, while those of macroscopic physics are non- 
recurrent and irreversible. These observations cast doubt on the possibility of 
deriving the macroscopic equations from classical mechanics. Therefore an 
example is presented to show that nonrecurrent equations can be derived from 
recurrent ones, and another example to show that irreversible equations can be 
derived from reversible ones. The irreversible equation derived in the second 
example describes either decaying, growing, or undamped motions, depending 
upon the initial conditions. Thus the specification of initial conditions 
introduces the irreversibility. These demonstrations may help to clarify previous 
resolutions of the recurrence and reversibility paradoxes. 
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1. I N T R O D U C T I O N  

Attempts to derive equations governing macroscopic matter from those of 
classical mechanics for microscopic matter have raised two problems. First 
Loschmidt (1876) noted that the classical mechanical equations are rever- 
sible while the macroscopic equations are not. Then Zermelo (1896) obser- 
ved that the motions of bounded classical mechanical systems are 
recurrent, while macroscopic motions are not. It is a paradox that irrever- 
sible equations should arise from reversible ones, and another paradox that 
nonrecurrent equations should follow from recurrent ones. These 
paradoxes have been resolved, but this fact is not generally realized because 
the resolutions are obscured by mathematical and physical complications. 
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Our goal is to resolve the paradoxes clearly and simply, and to show 
where irreversibility is introduced. Since the paradoxes are essentially 
mathematical, we reformulate them as mathematical questions: 

1. Can nonrecurrent equations be derived from recurrent equations? 

2. Can irreversible equations be derived from reversible equations? 

To answer the first question, various authors have shown that for cer- 
tain classical N degree of freedom systems, the recurrence time tends to 
infinity with N. Therefore the recurrent equations of motion for these 
systems tend to nonrecurrent ones. However the limiting equations are still 
reversible. 

To answer the second question one must consider systems with N 
tending to infinity, or with N infinite, to avoid recurrence. For certain such 
systems, a number of authors have derived equations for some degrees of 
freedom by eliminating or projecting out the other degrees of freedom. This 
projection method has yielded irreversible equations in which motions 
decay in time. 

It has not been realized that exactly the same method applied to the 
same systems can also yield irreversible equations in which the motions 
grow in time. Whether the motions decay or grow or do neither depends 
upon the initial conditions of the system. Furthermore these conditions 
also determine the decay or growth rate. 

This result leads to the conclusion that the symmetry between past 
and future, possessed by the original equations, is not broken by letting N 
become infinite nor by projecting out some degrees of freedom. It is broken 
by specifying a particular initial condition. This is understandable because 
the operations of taking the limit N ~  oe and projecting out degrees of 
freedom both commute with time reversal, while specifying an initial con- 
dition does not. 

Now we describe the contents of the rest of this paper. In Section 2 we 
apply the projection method to a particle attached to a spring and to an 
infinitely long string, which is a system with infinitely many degrees of 
freedom. We obtain an irreversible equation for the particle motion, in 
which the damping is either positive, negative, or zero depending upon the 
initial conditions. 

In Section 3 we derive an equation for the density of N free particles 
moving around on a circle in the limit N-~ Go. This equation is non- 
recurrent but reversible. In Section 4 we compare the density for N finite 
with that for N infinite. In Section 5 we present some concluding remarks 
and references to some of the relevant previous work. 
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2. A PARTICLE ON A STRING 

To show how an irreversible equation can be derived from reversible 
ones, we consider an infinitely long string which performs small-amplitude 
transverse vibrations in the x, y plane about the x axis. We denote by 
U(x, t) its displacement at position x and time t, and we write its equation 
of motion as 

U,=c2Ux~, x #O (1) 

Here c is the speed of transverse waves. A particle of mass M is attached to 
the string at x = 0, and is also attached to a linear or nonlinear spring. We 
let Z(t) be the displacement of the particle in the y direction, and - F ( Z )  
be the restoring force exerted on it by the spring. Then the equation of 
motion of the particle, and the condition of attachment to the string, are 

MZtt + F(Z) = G[Ux(0+, t) -- Ux(0- ,  t)] (2) 

z ( t )  = u(0, t) (3) 

In (2) a denotes the tension in the string. 
Lamb (1) considered this problem with F(Z) linear in Z and with the 

string semi-infinite. He used it to explain why the field radiated by a dam- 
ped oscillator increases with distance from the oscillator, but he did not 
consider irreversibility. 

The equations (1)-(3) govern the motion of the system. They are 
reversible, as we can see from the fact that they involve only second 
derivatives with respect to t. Thus if U(x, t), Z(t) is a solution, so is the 
time-reversed motion U(x, - t), Z ( -  t). 

A particular solution of (1) which satisfies (3) is the outgoing wave 
solution 

U(x, t)= Z(t-Ixl/e) (4) 

Upon using (4) to eliminate U from (2), we obtain the following equation 
for Z: 

2o- 
MZ,, + - -  Z, + F(Z)=O (5) 

C 

This is the equation of a damped nonlinear oscillator with no external 
force. It is clearly irreversible because of the Z, term, so we have shown 
that an irreversible equation can be derived exactly from reversible 
equations, answering question 2 affirmatively. 
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It is tempting to conclude that, because of radiation of waves along 
the string, the particle motion must be positively damped as it is in (5). 
This conclusion is incorrect, as we see by considering instead of (4) the 
incoming wave solution 

U(x, t) = Z(t  + Ixl/c) (6) 

It also satisfies (1) and (3). When used in (2) it yields 

MZ, , -  2_~a Z, + F(Z) = 0 (7) 
c 

This equation for Z has negative damping. Energy is supplied to the par- 
ticle by waves on the string traveling toward the particle. 

The two solutions (4) and (6) for U differ in their initial values and 
initial velocities at t = 0. Thus the sign of the damping coefficient in (5) or 
(7) is determined by the initial conditions of the string. We shall now show 
that even the magnitude of this coefficient is determined by those con- 
ditions. 

Let us write the general solution of (1) satisfying (3) in the form 

U(x,t)=~Z(t-lxl/c)+(1-cQZ(t+lxl/c)+u(x,t)  (8) 

Here c~ is any real number and u(x, t) is any solution of (1) which vanishes 
at x = 0: 

Utt=CZUxx, x r  (9) 

u(0, t) = 0 (10) 

Substitution of (8) into (2) yields 

MZ,,+ ( 2 a -  1) 2a z ,+ r (z )= f(t) (11) 
c 

where 

f ( t )=~[ux (O+,  t)-ux(O-, t)]  (12) 

We see that in the equation (11) for Z, the damping coefficient can 
have any real value, depending upon the choice of c~. The choices e = 1 and 
e = 0  yield the values in (5) and (7), respectively. The choice e = l / 2 ,  
corresponding to half incoming and half outgoing waves, yields the damp- 
ing coefficient zero. Since the different solutions (8), which give rise to these 
choices, differ only in their initial conditions, it follows that the initial con- 
ditions play an essential role in determining the damping coefficient and 
the nature of the irreversibility. 
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3. PARTICLES ON A CIRCLE 

To illustrate how recurrence can be eliminated, we shall consider N 
noninteracting particles, moving along the circumference of a circle. Let 
cps(t ) be the angular position of particle j at time t. We take the equations 
of motion to be 

dZ(PJ = 0, j =  1 ..... N (13) 
dt ~- 

These equations are obviously reversible. Their solution with initial 
position q~o and initial angular velocity ~oj is 

~pj(t)=~p~ + c~st (14) 

To show that the motion is recurrent, we first suppose that for each j, 
~ = P/qi, where pj and qj are integers. Thus we suppose that each ~o/2~z 
is a rational number. Then at the time t* =nq~q2"' 'qN, where n is an 
integer, it follows that ~ojt*=21mpsq~..'qj ~qs+~'''qN, SO COjt* is an 
integer multiple of 27r. Then (14) shows that , _ o q~j(t n ) - cp i mod 27r, so at t* 
each particle has returned exactly to its initial position. Thus the motion is 
periodic with period t*. When ~os/2rc is irrational, it can be approximated 
arbitrarily closely by a rational number if the denominator q is chosen 
large enough. From this it can be shown that for any set of ~oj there is also 
a sequence of times, tending to infinity, at which all the particles return 
arbitrarily close to their initial positions. Therefore the motion is called 
recurrent. Estimates of the way in which these recurrence times increase 
with N have been determined by Frisch, (2~ Hemmer (see Ref. 3) and 
Wergeland. (3 

Next we introduce the angular velocity ~o and the fractional number 
density fu(q~, 09, t), defined by 

1 6[~o:(t)-q,J 6[~oj-co] (15) fN(~o, o~, t)=-~. 
J = l  

By direct substitution, using the fact that de)/dt = O, we can verify that fN 
satisfies the differential equation 

6htf  N -b (061~of N = 0 (16) 

This equation is equivalent to the system (13), so its solutions are also 
reversible and recurrent. 

We now assume that as N becomes infinite, fN has a weak limit f :  

lira fu(~O, ~, t )=f(~0,  CO, t) (17) 
N ~ o : 3  
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Then it follows from (16), under some mild conditions, that f satisfies 

~ , f +  coa~f=  0 (18) 

Replacement of t and co by - t  and -co leaves (18) unchanged, so it is 
reversible. Its solution with initial condition f(q~, co, 0)--fo(r co) is 

f(~o, co, t)= fo(r , co) (19) 

We shall prove next that f is not recurrent by considering the angular 
number density p(q~, t) defined by 

p(r t) = f(~p - 2~n, co, t) dco (20) 

By using (19) for f i n  (20) and then setting x - - r  co t -2nn  we get 

f i p(~o, t) = fo(q~ - cot - 2nn, m) dco 
cx~ n ~  - - o o  

= 1  fo x, t 

As t becomes infinite, the last sum in (21) converges to a Riemann integral. 
If we write dy = -2~/t ,  we obtain from (21) and the fact that fo is nor- 
malized, the result 

lim p(cp, t )=  1 f ~176 foo --,1 (22) ,~ +~ ~ oo _o~ f~ y) dy dx= 2~z 

This shows that p converges to a limit as t becomes infinite, which cannot 
be the case if f is recurrent. Therefore f is nonrecurrent. 

Frisch (4) has also shown that the density and other macroscopic quan- 
tities tend to limits as t tends to + ~ and as t tends to - ~ ,  and that these 
limits are equal. His analysis is based upon the introduction of the 
probability distribution function of statistical mechanics, rather than on the 
limit N ~ ~ in the deterministic case considered above. 

We have now shown in an example that by letting N become infinite, 
we obtain an equation which is nonrecurrent but still reversible. It was to 
avoid recurrence that we began with a system with infinitely many degrees 
of freedom in Section 2. 

4. C O M P A R I S O N  OF D E N S I T I E S  FOR N FINITE A N D  INF IN ITE  

The angular number density pN(q~, t) for finite N is defined by (20) 
with f replaced byfN.  When (15) is used fOrfu in (20) it yields 

1 ~ ~ 6(~p~162 (23) pN(~o, t)=~ 
J = l  n = - - c o  
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The particle motion for N finite is recurrent, so pN(~0, t) is recurrent, while 
p(~o, t) is nonrecurrent. Therefore if p and iON are equal or nearly equal at 
t = 0, they cannot remain nearly equal indefinitely. After a finite time, 
which depends upon N, they must become very different. This is so because 
p(q~, t) tends to a limit as t increases, while pu(~O, t) returns arbitrarily close 
to its initial value infinitely often. We shall now evaluate p and a smoothed 
version of PN in a special case in order to compare them. 

To calculate PN, we set N =  2 M +  1 and start with all particles at the 
origin, so q~o = 0 for all j. We take the initial angular velocities to be 
equally spaced with coj = j / ( 2 M  + 1), j = - M ,  .... M. In addition we average 
DN over an interval of length e centered at ~o, and call the smoothed density 
[N,e(qg, t), Thus by using (23) and these initial conditions we get 

1 ~e/2 
pu.~(qO, t) = 7 J-~/2 p(qo + O, t) dO 

, (,, 
- 6 

( 2 M + l ) e i =  M,= co ~/z ~2M~+1 

\ 
- 2 x n  - O )  dO (p 

(24) 

The last integral is zero unless n lies in the interval 

2rc 22~+1 qo-  < n < ~ - 7 ~ 2 ~ +  1 qo+ (25) 

When n does lie in this interval, the integral is unity. Therefore (24) can be 
rewritten 

pN,~(q~, t ) -  1 { Z (  ;' 2)] 
( 2 M +  1)ej=~_M 2 M + l  - ~ ~  

(26) 

Here Ix]  denotes the integer part of x. 
The corresponding density p(~o, t) is given by (21) with 

f0(cp, co) = 6(q)), - 1/2 < co < 1/2 
(27) 

= 0, Icol > 1/2 

It is also the limit of PN,e((p, t) as N tends to infinity and e tends to zero. By 
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calculating it either from (21)and (27), or from (26)as N ~  m and e--,0, 
we get 

1 fV / \7  F 1 /  t t 
p(~o, t )=  po~,o(~O, t) =-2 ~,g-2-_ [ ~ -  qo,,  +,g~_ [~ + ~o,,~ (28) 

t (.L.47~ \.4- / j  LZ.lt \ .4  / j  ) 

Here also [x]  denotes the integer part of x. 
For M finite, the 2 M +  1 particles have angular velocities which are 

integer multiples of 1/(2M+ l). Therefore their motion is periodic with 
period (2M+ 1)2n, so pN(qg, t) is periodic with this period. But p(q0, t) 
given by (28) is neither periodic nor recurrent. In fact, as (22) shows, 
p(~0, t) tends to 1/2n as t becomes infinite. 

In Fig. 1 we show two periods of P2M+ 1,~(n, t) for ~ = 0.1 and M = 500. 
We see that small fluctuations have much smaller recurrence times than the 
period (2M + 1) 2n ~ 6289, which is the recurrence time of the largest fluc- 
tuations. In Figs. 2 and 3 we show p(n, t) and p2M+l,~(n, t) for e =0.1 with 
M =  100 in Fig. 2 and M =  5000 in Fig. 3. We see that the limit density 
p(n, t) is a good approximation to the density with 2 M +  1 = 10 001 as far 
as the calculation extends, which is only to t = 500. The figures also show 
that p(n, t) tends to 1/27r~0.15 as t becomes infinite. 

From (24) or (26) we see that p2M+l,,(n,t) is even in t and 
periodic with period T=(2M+I)2zc .  Therefore p2M+l.f(n,T--t)= 
P2M + 1,~( n, - t ) =  P2M+ 1,~(n, t). This shows that the graph of P2M+ 1,~(n, t) in 

P 
Cd 

0 s 4000 8000 8OOO 
t 

10000  12000  14000 

Fig. I. Number density p2M+l,~(Tz, t) versus time t for M=500 ,  e=0.1.  Two complete 
periods are depicted. The period is (2M + 1 ) 2~r ~ 6289. 
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Fig. 2. Number densities P2M+I,~(n, t) and p(n, t) versus time t for M=100,  e=0.1. The 
period of pz01,0.1(g, t) is approximately 1263. The limit density p has the graph with fewer 

jumps. 

the interval T -  500 < t < T is the same as that for - 500 < t < 0, which is 
the mirror image of  that for 0 < t < 500. For M =  5000 and e = 0.1 it is the 
same as the graph in Fig. 3 with the abscissa denoting T - t .  The graph 
shows that P2M+ 1,~(n, t) hovers around the value 1/2n at T - t  = 500 and 
then as T - t  tends to zero it oscillates with increasing downward jumps 
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Fig. 3. Number densities P2M+l,e,(/r, t) and p(n, t) versus time t for M = 5 0 0 0 ,  e=0 .1 .  The 
period of PJo0ol,01(n, t) is about 62 382. The graph of p(n, t) is hidden by the curve for 
Ploool,o.l(n, t) which oscillates over it. With the axis denoting 62 3 8 2 - t ,  the graph also 
represents Plo0ol,0.1(rr, t) for t near the end of a period. 
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until it reaches zero near the end of the first period. The graph of p(~c, t), 
which is not shown in Fig. 3 for this range of t, is practically constant at 
the value 1/2re. Thus the two functions differ greatly in this range of t. 

5. C O N C L U D I N G  R E M A R K S  

1. When the string is initially in thermal equilibrium at temperature 
T, the force f(t) in (11) is a Gaussian random function with mean zero and 
correlation function ( f ( t )  f ( t ' ) )  = 2kTa2c l~( t -  t'), where k is 
Boltzmann's constant. This follows from the work of Keller, (5) and was also 
shown by Lewis and Thomas. (6) Then with e = 1, (11) is just the Langevin 
equation. The relation between the damping constant in it and the 
correlation function yields the fluctuation-dissipation theorem. An earlier 
derivation was given by Zwanzig. (7) 

2. The particle-string model illustrates the projection method. (8 H) 
This method concerns a system with macroscopic coordinates Z(t) and 
internal or heat bath coordinates U(t), satisfying equations of the form 

Z, = F(Z, U), U, = G(Z, U) (29) 

The second equation is solved for U(t) in terms of Z(t) and substituted into 
the first equation to yield an equation for Z(t) alone. When the system is 
infinite dimensional this equation may be irreversible even if the original 
system is reversible. Whether its solutions decay or grow in time depends 
upon the initial condition U(0), as is shown by the example in Section 2. 

3. Lebowitz and Spohn (Ref. 12, p. 597), in studying self-diffusion of 
colored particles, asked "For which initial dynamical states is the time 
evolution of the color density well approximated by a kinetic equation?" 
They realized that an irreversible diffusion equation could be derived only 
for certain initial conditions, in agreement with the result in Section 2. 
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